organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hydrogen-bonded supramolecular motifs in 4,4'-bipyridinium 8-hydroxy-7-iodoquinoline-5-sulfonate dihydrate

Madhukar Hemamalini,^a Packianathan Thomas Muthiah,^a* Gabriele Bocelli^b and Andrea Cantoni^b

^aDepartment of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and ^bIMEM–CNR, Parco Area delle Scienze 17/a, I-43100 Parma, Italy Correspondence e-mail: tommtrichy@yahoo.co.in

Received 20 October 2003 Accepted 16 January 2004 Online 31 March 2004

In the title compound, $C_{10}H_9N_2^{+}\cdot C_9H_5INO_4S^{-}\cdot 2H_2O$, the 4,4'bipyridine molecule is protonated at one of the pyridine N atoms. These moieties self-assemble into a supramolecular chain along the *a* axis through N-H···N hydrogen bonds. The quinolinol OH group acts as a donor with respect to a sulfonate O atom [O-H···O(sulfonate)] and acts as an acceptor with respect to a C-H group of ferron [C-H···O(hydroxy)], forming a supramolecular chain along the *b* axis. These two types of supramolecular chains (one type made up of bipyridine motifs and the other made up of sulfoxine motifs) interact *via* π - π stacking, generating a three-dimensional framework. These chains are further crosslinked by C-H···O hydrogen bonds and O-H···O hydrogen bonds involving water molecules.

Comment

Derivatives of 8-hydroxyquinoline (oxine) are known for their antiamoebic, antibacterial and antifungal activities, which are correlated to their metal-chelating ability (Banerjee & Saha, 1986). The introduction of sulfonic acid into the oxine moiety offers additional metal-binding and hydrogen-bonding sites/ modes. This type of ligand is called sulfoxine (sulfonic acid + oxine). Hydrogen bonds are primarily electrostatic and are formed with both strong and weak donors and acceptors (Desiraju & Steiner, 1999). The hydrogen-bonding patterns and metal-binding modes of sulfoxinates are of current interest (Cai, Chen, Liao et al., 2001; Cai, Chen, Feng et al., 2001). The crystal structures of 8-hydroxy-7-iodoquinoline-5-sulfonic acid (ferron; Balasubramanian & Muthiah, 1996), a cobalt complex of ferron (Balasubramanian, 1995), a nickel(II) complex of ferron (Raj et al., 2003) and a zinc(II) complex of ferron (Francis et al., 2003) have recently been reported from our laboratory. 4,4'-Bipyridine is an excellent synthon for preparing novel supramolecular structures, owing

to its rigidity and aptness to form strong hydrogen bonds/ coordination bonds *via* its two N atoms. Supramolecular structures made up of many 4,4'-bipyridine compounds have been reported (Lough *et al.*, 2000). In this paper, the hydrogen-bonding patterns of 4,4'-bipyridinium 8-hydroxy-7iodoquinoline-5-sulfonate dihydrate, (I), are discussed.

The asymmetric unit of (I) contains one 4,4'-bipyridinium cation, a 8-hydroxy-7-iodoquinoline-5-sulfonate (ferron) anion and two water molecules (Fig. 1). The bipyridine moiety is protonated at one of the ring N atoms (N1A), as is evident from the increase of the internal angle at nitrogen (C2A-N1A-C6A) from 115.45 (19)° in neutral 4,4'-bipyridine (Boag et al., 1999) to $121.5 (5)^{\circ}$ in the present study. This increase of the internal angle has also been observed in many 4,4'-bipyridinium salts (Iyere et al., 2002). In the 4,4'-bipyridinium cation, the two rings are twisted by $31.05 (3)^{\circ}$ about the C7A - C4A bond; this angle normally ranges from 17 (1) to 38.4 (9)° (Subbotin & Aslanov, 1986). The sulfonic acid group is deprotonated. In the 8-hydroxy-7-iodoquinoline system, the hydroxy H atom forms an intramolecular hydrogen bond with the quinoline N atom, leading to a hydrogen-bonded ring with graph-set notation S(5), as is also observed in the neutral 8hydroxyquinoline system. The quinolinol O1 atom is hydrogen bonded to the sulfonate O3 atom and the C4 atom of a screwrelated ligand; atom C4 is also hydrogen bonded to the quinolinol oxygen (O1), forming a hydrogen-bonded ring with graph-set notation $R_2^2(8)$ (Etter, 1990; Bernstein *et al.*, 1995). The 4,4'-bipyridinium moieties self-assemble into a supramolecular chain along the *a* axis through $N-H \cdots N$ hydrogen bonds involving the protonated and unprotonated N atoms. These two types of supramolecular chains (one type made up of bipyridine motifs and the other made up of sulfoxine motifs) interact via $\pi - \pi$ stacking, generating a three-dimensional framework. These chains are further crosslinked by C-H...O and O-H...O hydrogen bonds involving water molecules (Table 2 and Fig. 2). The various $O \cdots O$ interactions are as follows: $O1W \cdots O1W(-x+1, -y, -z) = 2.8164(7) \text{ Å},$ $O1W \cdots O2W(-x+1, y-\frac{1}{2}, -z+\frac{1}{2}) = 2.8113$ (7) Å and $O2W \cdots O2W(-x+2, -y+1, -z+1) = 2.7961$ (8) Å.

In the structure of (I), $\pi - \pi$ interactions between the aromatic rings are observed. The N1/C2–C4/C9/C10 pyridine ring of ferron has stacking interactions with the N1*A*/C2*A*–C6*A* pyridine ring of the 4,4'-bipyridinium cation, with a perpendicular separation of 3.498 Å, a centroid-to-centroid distance of 3.653 (3) Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 16.48°. The

Figure 1

A view of the components of (I), with the atom-labelling scheme and 50% probability displacement ellipsoids.

C5–C10 phenyl ring of ferron is positioned over the N1*A*/ C2*A*–C6*A* pyridine ring of the 4,4'-bipyridinium cation, with a perpendicular separation of 3.521 Å, a centroid-to-centroid distance of 3.813 (3) Å and a slip angle of 31.23° . These values are close to those reported for aromatic π – π stacking inter-

Figure 2

A view of the molecular packing, with H atoms omitted for clarity.

actions (Hunter, 1994). The I1 atom is in contact with the sulfonate O4 atom $[I1\cdots O4(-x, y + \frac{1}{2}, -z + \frac{1}{2}) = 3.105 (4) \text{ Å};$ van der Waals distance = 3.50 Å; C7–I1 \cdots O4 = 172.3 (18)°]; this I \cdots O interaction was also observed in the crystal structure of ferron (Balasubramanian & Muthiah, 1996). This type of halogen–oxygen interaction has been recognized in the literature and is widely used in crystal engineering (Thalladi *et al.*, 1996).

Experimental

Hot aqueous solutions of 4,4'-bipyridine (39.05 mg) and ferron (87.80 mg) were mixed in a 1:1 molar ratio. The resulting solution was warmed over a water bath for half an hour and kept at room temperature for crystallization. After a few days, plate-shaped yellow crystals were obtained.

Crystal data

 $C_{10}H_9N_2^+ \cdot C_9H_5INO_4S^- \cdot 2H_2O$ $M_r = 541.32$ Monoclinic, $P2_1/c$ a = 9.657 (3) Å b = 15.213 (3) Å c = 14.679 (2) Å $\beta = 106.01$ (3)° V = 2072.9 (9) Å³ Z = 4 $D_x = 1.735 \text{ Mg m}^{-3}$

Data collection

Philips PW1100 diffractometer ω scans 4690 measured reflections 4526 independent reflections 3101 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 27.0^{\circ}$ $h = -12 \rightarrow 11$ $\theta = 3.0-27.0^{\circ}$ $\mu = 1.69 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.29 \times 0.20 \times 0.19 \text{ mm}$

Cell parameters from 25

Mo $K\alpha$ radiation

reflections

 $k = 0 \rightarrow 19$ $l = 0 \rightarrow 18$ 1 standard reflection every 100 reflections intensity decay: none

Table 1

Selected geometric parameters (Å, °).

I1-C7	2.091 (5)	N1-C9	1.360 (7)
S2-O2	1.438 (5)	N1-C2	1.313 (8)
S2-O3	1.454 (5)	N1A - C2A	1.326 (8)
S2-O4	1.454 (4)	N1A - C6A	1.332 (8)
S2-C5	1.789 (5)	N10A-C9A	1.341 (8)
O1-C8	1.353 (6)	N10A-C11A	1.330 (8)
02-82-03	113.4 (3)	\$2-C5-C10	121.0 (4)
O2-S2-O4	113.4 (3)	I1-C7-C8	121.2 (3)
O2-S2-C5	105.3 (3)	I1-C7-C6	119.3 (4)
O3-S2-O4	112.7 (3)	O1-C8-C7	120.0 (5)
O3-S2-C5	105.7 (3)	O1-C8-C9	119.7 (5)
O4-S2-C5	105.5 (3)	N1-C9-C8	116.2 (4)
C2-N1-C9	117.3 (5)	N1-C9-C10	123.4 (5)
C2A-N1A-C6A	121.5 (5)	N1A - C2A - C3A	120.6 (5)
C9A-N10A-C11A	118.2 (5)	N1A-C6A-C5A	120.5 (5)
N1-C2-C3	124.3 (6)	N10A-C9A-C8A	122.5 (6)
S2-C5-C6	119.0 (4)	N10A-C11A-C12A	122.9 (6)

Table 2	_	
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 = H1 \cdots N1$	0.82	2.30	2,688 (6)	110
$O1 - H1 \cdots O3^{i}$	0.82	2.18	2.837 (7)	137
$N1A - H1A \cdots N10A^{ii}$	0.86	1.80	2.662 (6)	178
$O1W - H11W \cdots O2$	0.94	2.10	2.856 (6)	137
$O2W - H22W \cdot \cdot \cdot O4^{iii}$	0.94	1.99	2.864 (6)	153
$C3A - H3A \cdots O2^{i}$	0.93	2.44	3.283 (8)	152
$C4-H4\cdots O1^{iv}$	0.93	2.50	3.388 (7)	159
C6-H6···O4	0.93	2.43	2.850(7)	108
$C12A - H12A \cdots O2W$	0.93	2.43	3.321 (9)	160

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) x - 1, y, z; (iii) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$; (iv) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Refinement

Refinement on F^2 R(F) = 0.057 $wR(F^2) = 0.152$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0974P)^2$ where $P = (F^2 + 2F^2)/3$
S = 0.97 4526 reflections	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 2.43 \text{ e} \text{ Å}^{-3}$
272 parameters	$\Delta \rho_{\rm min} = -2.49 \ {\rm e} \ {\rm A}^{-3}$

Atom H11W of water molecule O1W and atom H22W of water molecule O2W were located from a difference Fourier map and allowed for but not refined in subsequent calculations. The remaining H atom of each water molecule could not be located. All other H atoms were refined using a riding model; U_{iso} values were set at $1.2U_{eq}$ (parent).

Data collection: *FEBO* (Belletti, 1996); cell refinement: *MolEN* (Fair, 1990); data reduction: *MolEN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON*97 (Spek, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1227). Services for accessing these data are described at the back of the journal.

References

Banerjee, T. & Saha, N. N. (1986). Acta Cryst. C42, 1408-1411.

Balasubramanian, T. (1995). PhD thesis, Department of Chemistry, Bharathidasan University, Tiruchirappalli, India.

- Balasubramanian, T. & Muthiah, P. T. (1996). Acta Cryst. C52, 2072–2073.
- Belletti, D. (1996). FEBO. Internal Report 1–96. Centro di Studio per la Strutturistica Diffracttometrica del CNR, Parma, Italy.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Boag, N. M., Coward, K. M., Jones, A. C., Pemblo, M. E. & Thompson, J. R. (1999). Acta Cryst. C55, 672–674.
- Cai, J., Chen, C.-H., Feng, X.-L., Liao, C.-Z. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 2370–2375.
- Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. & Chen, X.-M. (2001). Acta Cryst. B57, 520–530.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Francis, S., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, m87–m90.
- Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
- Iyere, P. A., Boadi, Y. W., Brooks, R. S., Atwood, D. & Parkin, S. (2002). Acta Cryst. E58, 0825–0827.
- Lough, A. J., Wheatley, P. S., Ferguson, G. & Gildewell, C. (2000). Acta Cryst. B56, 261–272.
- Raj, S. B., Muthiah, P. T., Rychlewska, U., Warzajtis, B., Bocelli, G. & O'lla, R. (2003). Acta Cryst. E59, m46–m49.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1997). PLATON97. Utrecht University, The Nertherlands.
- Subbotin, M. Yu. & Aslanov, L. A. (1986). Zh. Neorg. Khim. 31, 901– 904.
- Thalladi, V. R., Goud, S. B., Hog, V. J., Allen, F. H., Howard, J. A. K. & Desiraju, G. R. (1996). *Chem. Commun.* pp. 401–402.